Select Page

Gordon T. Taylor

Professor and Director of the NAno-Raman Molecular Imaging Laboratory (NARMIL)
Ph.D., 1983, University of Southern California
NAno-Raman Molecular Imaging Laboratory webpage

Marine molecular microbiology, interests in microbial ecology, plankton trophodynamics, anoxia, hypoxia, biogeochemistry, single cell analysis, Raman Microspectrometry and Atomic Force Microscopy

CV  Research Gate Profile  ORCID Profile
Scientia Publications Professor Gordon Taylor – Marine microbes shed light on our changing oceans

Students Wanted! Looking for a graduate career in Microbial Oceanography? We’re currently seeking Ph.D. students to join our research group. If interested, contact me for more information.


Research Interests

My research efforts have mainly focused on (i) microbial mediation of biogeochemical process (particularly carbon cycling), (ii) trophic interactions among microorganisms (bacteria, protozoans, algae and viruses), and (iii) and linking ecological function to specific microbial community members. Microbiological and chemical exchange processes across interfaces, such as oxic/anoxic, solid/water and air/water boundaries are particularly fascinating to me. I also have abiding interests in cycling of micronutrients, such as B-vitamins, between producers and consumers.

Microbial ecology and diagenesis of organic debris as it transits from sites of production to sites of deposition are enduring central research interests. Flux and decomposition of this material in the ocean have important implications on nutrient cycling, ocean productivity, transport of contaminants, and the ocean’s capacity to sequester atmospheric carbon dioxide in its interior (the biological carbon pump). Microbiological processes are intimately linked to the fate of this carbon and are responsive to climatic changes. As a founding member of the NSF-funded CARIACO Ocean Time Series Program, my team’s research has improved understanding of current carbon cycling dynamics in the southern Caribbean Sea on the continental margin of Venezuela. For example, our studies have documented a >1°C rise in sea surface temperatures, declines in upwelling, nutrient supply, plankton productivity and pH as well as an ecosystem state change between 1995 and 2011 (Taylor et al. 2012; Astor et al. 2013). Results are also being used to better interpret ocean conditions and climate in the geologic past in order to better predict the future. To learn more about this program, visit its website or refer to some of the publications listed below.

My lab and Prof. M. Scranton’s lab have focused on microbial dynamics, biogeochemistry and transformations of organic materials transported through redoxclines (transition between oxic and anoxic waters). We are particularly keen to understand processes that control carbon cycling, such as chemoautotrophic production. The reason being that chemoautotrophic carbon fixation is globally important to food webs and processes controlling cycling of other important elements, such as nitrogen and sulfur. In addition to our times series program, my lab with colleagues from Woods Hole Oceanographic Institution added an NSF-sponsored Metagenomics and Metatranscriptomics project in 2013 to the CARIACO core program, focusing on how genes and transcripts from Bacteria, Archaea and Protists change with the geochemical seascape. In my lab, we combine traditional microbial ecological and geochemical measurements with modern molecular techniques, such as ssu rRNA libraries, terminal restriction fragment length polymorphism (T-RFLP), fluorescent in situ hybridization (FISH), and quantitative PCR of functional genes, to unravel the interplay between chemical gradients, elemental cycling and microbial population dynamics. Beyond being intrinsically fascinating, the Cariaco Basin serves as a model for other oxygen-impoverished water columns (e.g., the Black Sea, Baltic and Mediterranean Deeps, Boundary Oxygen Minimum Zones, Gulf of Mexico “Dead Zone”, Long Island Sound, and fjords), which are becoming more widespread geographically as climate changes and as human populations grow and eutrophy their watersheds.

Over the years, our holy grail has been to link function to phylogeny, i.e., understand the jobs of specific microbial populations across wide-ranging geochemical seascapes. These linkages enable more authoritative inferences about the role of specific microorganisms discovered within genomic databases. To that end, we have employed cell and taxon-specific tools, such as microautoradiography-FISH (MAR-FISH) and stable isotopic probing of nucleic acids (SIP), as well as classical cultivation approaches. Through NSF’s Major Research Instrumentation funding, we have built exciting new analytical capability within SoMAS’ NAno-Raman Molecular Imaging Laboratory (opened Jan 2014), which enables single-cell analyses. NARMIL houses a novel, state-of-the-art Renishaw inVia confocal laser Raman microspectrometer coupled to a Bruker Innova Atomic Force Microscope (AFM), which permits 3-D mapping of chemical functionalities resolved to <30 nm, while coincidentally providing fluorescent, bright field and topographic images. By combining stable isotopic labeling, fluorescent phylogenetic probes and Raman mapping, we are determining identity of cells actively assimilating a particular label. By focusing the laser beam on the AFM tip, we can achieve nanometer-scale spatial resolution and greater sensitivity through the Tip-Enhanced Raman Scattering (TERS) effect. TERS enables non-destructive mapping ofchemical distributions at spatial scales relevant to individual microorganisms. NARMIL provides SoMAS with a unique and powerful analytical tool with countless applications throughout the natural sciences and engineering. We are enthusiastically exploring new research frontiers with these novel capabilities! To learn more about our facility, please visit: .


Cernadas-Martín S, Scranton MI, Astor Y, Taylor GT. (2017) Aerobic and anaerobic ammonia oxidizers in the Cariaco Basin: Identification, quantification and community structure.  Aquatic Micrbiol Ecol 79: 31–48, DOI: 10.3354/ame01817.

Kang Y, Tang Y-Z, Taylor GT, Gobler CJ. (2017). Discovery of a resting stage in the harmful, brown tide-causing pelagophyte, Aureoumbra lagunensis: a mechanism facilitating recurring blooms and recent expansion? J Phycol 53: 118-130. DOI: 10.1111/jpy.12485

Suter EA, Scranton MI, Chow S, Medina L, Taylor GT. (2017). Niskin bottle sample collection can alias microbial community composition and biogeochemical interpretation. Limnol Oceanogr 62: 606-617. DOI: 10.1002/lno.10447

Li L, Liu H, Wang L, Yue S, Tong X, Zaliznyak T, Taylor, G, Wong, SS. (2016). Chemical strategies for enhancing activity and charge transfer in ultrathin Pt nanowires immobilized onto nanotube supports for the oxygen reduction reaction. ACS Applied Materials & Interfaces 8: 34280−34294

Wang L, Han J, Sundahl B, Thornton S, Zhu YQ, Zhou RP, Jaye C, Liu HQ, Li ZQ, Taylor GT, Fischer DA, Appenzeller J, Harrison RJ, Wong., SS (2016). Ligand-induced dependence of charge transfer in nanotube-quantum dot heterostructures. Nanoscale 8 (34):15553-15570

Rodriguez-Mora M, Edgcomb V, Taylor C, Taylor GT, Scranton M, Chistoserdov A (2016). The diversity of sulfide oxidation and sulfate reduction genes expressed by the bacterial communities of the Cariaco Basin, Venezuela. Open Microbiol Jour 10: 140-149

Han J, McBean C, Wang L, Hoy J, Jaye C, Liu H, Li Z-Q, Sfeir M, Fischer D, Taylor G, Misewich J, Wong SS (2015). Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO4 metal oxide – CdSe nanocrystal composite heterostructures. Chem Materials 27: 778−792.

Taylor GT (2015). Review of The Biology And Ecology Of Tintinnid Ciliates Models For Marine Plankton by J.R. Dolan, D.J.S. Montagnes, S. Agatha, D. W. Coats and D. K. Stoecker (Eds.), Wiley-Blackwell, Chichester, U.K. 2013, Quarterly Review of Biology, Univ. Chicago Press, pp. 314-315.

McParland, E, Benitez-Nelson CR, Taylor GT, Rollings A, Lorenzoni L. 2015. Cycling of suspended particulate phosphorus across the redoxcline of the Cariaco Basin. Mar. Chem. 176: 64-74.

Rodriguez-Mora M, Scranton M, Taylor GT, Chistoserdov A. 2015. The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by massively parallel tag sequencing. FEMS Microbiology Ecology 91: doi: 10.1093/femsec/fiv088.

Liu L, Lwiza KMM Taylor GT (2015). Importance of the bacterial dynamics in model simulations of seasonal hypoxia.  Cont. Shelf Res. 105: 1-17.

Suter E, Lwiza KMM, Rose JM, Gobler C, Taylor GT (2014). Nutrient and phytoplankton regime shifts during decadal decreases in nitrogen loadings to the urbanized Long Island Sound estuary. Mar. Ecol. Prog. Ser. 497: 51-67.

Scranton MI, Taylor GT, Thunell R, Benitez-Nelson C, Muller-Karger F, Fanning K, Lorenzoni L, Montes E, Varela R, Astor Y (2014). Interannual and decadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography Magazine 27(1): 148-159.

Taylor GT, Muller-Karger F, Thunell RC, Scranton MI, Astor Y, Varela R, Troccoli-Ghinaglia L, Lorenzoni L, Fanning KA, Hameed S, Doherty O (2013). Respuesta del ecosistema Caribe Sur al cambio climático. COFA Convivencia Pesquera,, Aug-Nov. 2013, pp. 19-21.

Lopez G, Carey D, Carlton J, Cerrato R, Dam H, DiGiovanni R, Elphick C, Frisk M, Gobler C, Hice L, Howell P, Jordaan A, Lin S, Liu S, Lonsdale D, McEnroe M, McKown K, McManus G, Orson R, Peterson B, Pickerell C, Rozsa R, Siuda A, Thomas E, Taylor G, Shumway S, Talmage S, Van Patten M, Vaudrey J, Wikfors G, Yarish C, and Zajac R (2013). Biology and Ecology of Long Island Sound. Chapter 6. In: Long Island Sound: Prospects for the Urban Sea, JS Latimer, MA Tedesco, RL Swanson, C Yarish, PE Stacey, and C Garza, eds. Springer, New York. pp 285- 479.

Astor YM, Lorenzoni L, Thunell R, Varela R, Muller-Karger F, Troccoli L, Taylor GT, Scranton MI, Tappa E Rueda D (2013). Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin, Deep-Sea Research II, 93, 33–43.

Gobler CJ, Lobanov AV, Tang Y-Z, Turanov AA, Zhang Y, Doblin M, Taylor GT, Sañudo-Wilhelmy SA, Grigoriev IV, Gladyshev VN (2013). The central role of selenium in the biochemistry and ecology of the harmful pelagophyte, Aureococcus anophagefferens J. Int. Soc. Microbial Ecology, 7, 1333-1343.

Rodriguez MJ, Madrid VM, Taylor GT, Scranton M, Chistoserdov AY (2013). Bacterial community composition in a large marine anoxic basin: a Cariaco Basin time-series survey. FEMS Microbiol. Ecol. 84, 625-639.

Muller-Karger F, Taylor GT, Astor Y, Thunell RC, Scranton MI, , Varela R, Troccoli Ghinaglia L, Lorenzoni L, Montes E, Fanning KA, & Benitez-Nelson C (2013). From Affiliated Project: The CARIACO Basin Ocean Time-Series. Land-Ocean Interactions in the Coastal Zone Inprint, ISSN 2070-2442 2013 Issue 1, pp. 5-17.

Sarmento H, Romera-Castillo C, Lindh M, Pinhassi J, Montserrat Sala M, Gasol JM, Marrase´ C, Taylor GT (2013). Phytoplankton species-specific release of dissolved free amino acids and their selective consumption by bacteria.  Limnol. Oceanogr. 58(3), 1123–1135.

Lorenzoni L, Taylor GT, Benitez-Nelson C, Hansell DA, Masserini R, Montes E, Fanning KA, Varela R, Astor Y, Guzmán L, Muller-Karger FE (2013). Spatial and seasonal variability of dissolved organic matter in the Cariaco Basin, Venezuela. J Geophys Res – Biogeosciences 118, 1–12, doi:10.1002/jgrg.20075.

Taylor GT (2013). Review of Marine Microbiology: Ecology and Applications, 2nd Edn. by Colin Munn, Garland Science Publ. NY and London, 2011 Quarterly Review of Biology, Univ. Chicago Press, 88(2), 144.

Orsi W, Edgcomb V, Faria J, Foissner W, Fowle WH, Hohmann T, Suarez P, Taylor C, Taylor GT, Vďačný P & Epstein SS (2012). Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin,Venezuela. Internat’l Jour System Evolutionary Microbio. 62: 1425–1433.

Podlaska A, Wakeham SG, Fanning K, Taylor GT (2012). Microbial community structure and chemoautotrophic activity in the oxygen minimum zone of the eastern tropical North Pacific. Deep-Sea Res. I, 66: 77-89.

Taylor GT, Muller-Karger F, Thunell RC, Scranton MI, Astor Y, Varela R, Troccoli-Ghinaglia L, Lorenzoni L, Fanning KA, Hameed S, Doherty O (2012). Ecosystem response to global climate change in the southern Caribbean Sea. Proc. Nat’l. Acad. Sci. (USA) 109(47): 19315-19320.

Wakeham SG, Turich C, Schubotz F, Podlaska A, Li XN, Varela R, Astor Y, Saenz J, Rush D, Sinninghe Damsté J, Summons RE, Scranton MI, Taylor GT, Hinrichs K-U (2012). Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep-Sea Res. 63: 133-156.

Li XN, Taylor GT, Astor Y, Varela R, Scranton MI (2012). The conundrum between chemoautotrophic production and oxidant and reductant supply: a case study from the Cariaco Basin. Deep-Sea Res. I, 61: 1-10.

Li XN, Taylor GT, Astor Y, Varela R, Scranton MI (2012). Response to comment on ‘The conundrum between chemoautotrophic production and reductant and oxidant supply: A case study from the Cariaco Basin’. Deep-Sea Res. 70:106-108.

Finiguerra MB, Escribano DF, Taylor GT (2011). Light-independent mechanisms of virion inactivation in coastal marine systems. Hydrobiologia, 665: 51-66.

Edgcomb V, Orsi W, Taylor GT, Vdacny P, Taylor C, Suarez P, Epstein S (2011). Accessing marine protists from the anoxic Cariaco Basin. J. Int Soc Microb Ecol. 5(8): 1237-1241.

Edgcomb V, Orsi W, Bunge J, Jeon SO, Christen R, Leslin C, Holder M, Taylor GT, Suarez P, Varela R, Epstein S (2011). Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. J Int Soc Microb Ecol. 5(8): 1344-1356.

Orsi W, Edgcomb V, Jeon SO, Bunge J, Taylor GT, Varela R, Epstein S (2011). Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. J Int Soc Microb Ecol. 5(8): 1357-1373.

Wakeham SG, Turich C, Taylor GT, Podlaska A, Scranton MI, Li XN, Varela R, Astor Y (2010). Mid-chain methoxylated fatty acids within the chemocline of the Cariaco Basin: a chemoautotrophic source? Organic Geochem. 41:498-512.

Taylor GT, Thunell RC, Varela R, Benitez-Nelson C & Scranton MI (2009). Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles above and within the anoxic Cariaco Basin. Deep-Sea Res. I, 56: 1266-1283.

Panzeca C, Beck AJ, Tovar-Sanchez A, Segovio-Zavala J, Gobler CJ, Taylor GT, Sañudo-Wilhelmy SA (2009). Distributions of dissolved vitamin B12 and Co in coastal and open-ocean marine systems. Estuar. Coastal Shelf Sci. 85: 223–230.

Lin X, Scranton MI, Chistoserdov AY, Varela R, Taylor GT (2008). Spatiotemporal dynamics of bacterial populations in the anoxic Cariaco Basin.  Limnol Oceanogr. 53(1): 37-51.

Panzeca C, Beck AJ, LeBlanc K, Taylor GT, Hutchins DA, Sañudo-Wilhelmy SA (2008). Potential cobalt limitation of vitamin B12 synthesis in the North Atlantic Ocean. Global Biogeochemical Cycles 22: GB2029, doi:10.1029/2007GB003124

Taylor GT & Sullivan CW (2008). Vitamin B12 and cobalt cycling among diatoms and bacteria in Antarctic sea ice microbial communities. Limnol. Oceanogr. 53: 1862-1877.

Li XN, Taylor GT, Astor Y, Scranton MI (2008). Sulfur speciation in the Cariaco Basin with reference to chemoautotrophic production. Mar. Chem. 112: 53-64.

Lin X, Scranton MI, Varela R, Chistoserdov AY, Taylor GT (2007). Compositional responses of bacterial communities to redox gradients and grazing in the anoxic Cariaco Basin.  Aquat. Microb. Ecol. 47: 57-72

Gobler CJ, Norman C, Panzeca C, Taylor GT, Sañudo-Wilhelmy SA (2007). Effects of vitamins (B1, B12) and inorganic nutrient dynamics on algal blooms in Long Island estuaries. Aquat. Microb. Ecol. 49: 181-194

Edgcomb VP, Jeon S, Taylor GT, Orsi W, Leslin C, Bunge J, Epstein SS (2007). Microbial observatory in the Cariaco Basin – Dynamics of protistan diversity across time, space, and chemical gradients. J. Phycol. 43: 57-57.

Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006). The multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157: 31-43

Hayes MK, Taylor GT, Astor Y, & Scranton MI (2006). Vertical distributions of thiosulfate and sulfite in the Cariaco Basin. Limnol. Oceanogr. 51: 280-287

Taylor GT, Iabichella-Armas M, Varela R, Muller-Karger F, Lin X, Scranton MI (2006). Microbial ecology of the Cariaco Basin’s oxic/anoxic interface: the U.S.-Venezuelan CARIACO times series program. In: Neretin LN (ed), Past and Present Water Column Anoxia, NATO Sci Ser., Springer, Netherlands, p. 473-499.

Scranton MI, Taylor GT, Astor Y & Muller-Karger F (2006). Temporal variability in the nutrient chemistry of the Cariaco Basin. In: Neretin LN (ed), Past and Present Water Column Anoxia, NATO Sci Ser., Springer, Netherlands, p. 139-160.

Sañudo-Wilhelmy, SA, Okbamichael M, Gobler CJ, Taylor GT (2006). Regulation of phytoplankton dynamics by vitamin B12. Geophys. Res. Lett., 33, L04604, doi:10.1029/2005GL025046

Lin X, Wakeham SG, Putnam IF, Astor YM, Scranton MI, Taylor GT (2006). Vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea compared using fluorescent in situ hybridization (FISH). Appl. Environ. Microbiol. 72(4): 2679-2690

Taylor GT, Gobler CJ & Sañudo-Wilhelmy SA (2006). Speciation and concentrations of dissolved nitrogen as determinants of brown tide (Aureococcus anophagefferens) bloom initiation. Mar Ecol Prog Ser. 312: 67-83

Panzeca C, Tovar-Sanchez A, Agustí S, Reche I, Duarte CM, Taylor GT, Sañudo-Wilhelmy SA (2006). B vitamin as regulators of phytoplankton dynamics. EOS, 87(52): 593-596

Ho, T-Y, Taylor GT, Astor Y, Varela R, Muller-Karger F, Scranton MI (2004). Vertical and temporal variability of redox zonation in the water column of the Cariaco Basin: implications for organic oxidation pathways.  Mar. Chem. 86: 89-104.

Taylor GT, Way J, Yu Y, Scranton MI (2003). Patterns of hydrolytic ectoenzyme activity among bacterioplankton communities in the lower Hudson River and Western Long Island Sound estuaries.  Mar. Ecol. Prog. Ser. 263:1-15.

Taylor GT, Hein C, Iabichella M (2003). Temporal variations in viral distributions in the anoxic Cariaco Basin.  Aquatic Microbial Ecology, 30: 103-116.

Taylor GT, Way J, Scranton MI (2003). Transport and planktonic cycling of organic carbon in the highly urbanized Hudson River estuary. Limnol. Oceanogr. 48: 1779-1795.

Stoeck T, Taylor GT ,Epstein S (2003). Novel eukaryotes from a permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69: 5656-5663.

Madrid VM, Taylor GT, Scranton MI, Chistoserdov AY (2001). Phylogenetic diversity of Bacterial and Archaeal communities in the anoxic zone of the Cariaco Basin. Appl. Environ. Microbiol. 67: 1663-1674.

Muller-Karger F, Varela R, Thunell R, Scranton M, Bohrer R, Taylor G, Capelo J, Astor Y, Tappa E, Ho T-Y, Walsh JJ (2001). Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical export. J. Geophys. Res. 106: 4527-4542.

Anderson TH, Taylor GT (2001). Nutrient pulses, plankton blooms and hypoxia in western Long Island Sound. Estuaries, 24: 228-243.

Taylor GT, Scranton MI, Iabichella M, Ho T-Y, Thunell RC, Muller-Karger F, Varela R (2001). Chemoautotrophy in the redox transition zone of the Cariaco Basin: A significant midwater source of organic carbon production. Limnol. Oceanogr. 46: 148-163.

U.S Global Change Research Program Climate Science Special Report

From Read the Draft of the Climate Change Report by the New York Times, August 7, 2017 A final draft report by scientists from 13 federal agencies concludes that Americans are feeling the effects of climate change right now. The report was completed this year and is...

2017 SoMAS Photo Competition

The SoMAS photo competition is an annual event where students (graduate and undergraduate), faculty and staff share their pictures with the SoMAS community and the general public. The Photo Competition will be divided into three categories with a single winner in each...

SoMAS Convocation 2017

Congratulations to our graduates!  The annual SoMAS Convocation occurred on Friday, May 19, 2017 at the Student Activities Center auditorium. Students gathered with their friends and family and SoMAS faculty and staff to celebrate the completion of their journey at...

SoMAS 2016 Retrospective Banquet

Many thanks for those that joined us on December 14, 2016 for our Holiday Retrospective with great food and people. The highlight was when Santa arrived and the little ones all got a ride with him. A special thank you to those who helped organize the event including...

News from the NAno-Raman Molecular Imaging Laboratory (NARMIL)

In September, we celebrated the first anniversary of Ms. Tanya Zaliznyak joining the SoMAS staff and taking the helm at NARMIL.  Her first year has been filled with exciting accomplishments demonstrating that this facility is reaching its scientific potential. We’d...

2016 SoMAS Photo Competition

The SoMAS photo competition is an annual event where students (graduate and undergraduate), faculty and staff share their pictures with the SoMAS community and the general public. The Photo Competition will be divided into three categories with a single winner in each...

SoMAS Alumni Reunite at 2016 Ocean Sciences Meeting in New Orleans

SoMAS faculty and alumni attending the 2016 Ocean Sciences Meeting in New Orleans gathered for an alumni reunion. Professors Gordon Taylor and Mary Scranton organized the event and invited SoMAS alumni present at the conference to reunite.  Other SoMAS faculty in...

Inaugural Class of ASLO Fellows includes Two SoMAS Professors

From ASLO Fellows Program, November 2015 Congratulations to the inaugural class of ASLO Fellows! The Association for the Sciences of Limnology and Oceanography Fellows program was initiated in 2015 to honor ASLO members who have advanced the aquatic sciences via their...

News from the NAno-Raman Molecular Imaging Laboratory (NARMIL)

In 2014, the NAno-Raman Molecular Imaging Laboratory (NARMIL) was established by an NSF Major Research Instrumentation (MRI) grant. SoMAS Professor Gordon Taylor, a marine molecular microbiologist, is the Director and Associate Professor Daniel Knopf, an atmospheric...

Skip to toolbar